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Detection of the Peak of an Arbitrary Spectrum 
LEONARD KLEINROCK, MEMBER, IEEE 

Summary-A new procedure is described for determining that 
frequency at which the spectrum of a signal has its absolute peak. 
The salient feature of the procedure is that it does not explicitly 
involve the estimation of the spectrum of the signal itself. Specifi- 
cally, it is shown that the limit of the iterated normalized auto- 
correlation [see (8) and (9)J of a function, f(t), is a pure cosine 
wave whose frequency corresponds to the location of the peak of 
the spectrum of f(f). 

Furthermore, if one is willing to accept an estimated peak fre- 
quency of maximum energy to within a given finite spectral resolu- 
tion, then the procedure terminates after a specified finite number 
of iterations. Results from a computer simulation of the procedure 
are described. The areas of application of this procedure are dis- 
cussed, and the results indicate that this method of detecting a 
signal (Le., by the peak of its spectrum) merits further consideration. 
It is important to note that the consideration of random processes 
has not been undertaken in this initial study; the results apply 
to the spectral peak of a deterministic signal only. 

I. INTRODUCTION 

I 

N COMMUNICATIONS engineering, it is often 
useful to be able to extract, from an incoming signal, 
that frequency which contains a greater (power or 

energy) density’ than any other frequency. In this study, 
a new procedure is described for determining that fre- 
quency; the significant aspect of the procedure is that the 
spectrum of the signal need not be calculated. 

The fundamental theorem of Section III describes the 
mathematically interesting result in the case where we 
carry our procedure to the limit. The more useful theorem 
in Section V, however, describes a realizable procedure for 
determining the frequency of maximum power or energy 
to within a finite spectral resolution. We begin by defining 
the quantities basic to the procedure. 

II. DEFINITIONS 

Consider that class of real functions or signals f(t) 
whose autocorrelation function, g(t) has the following 
properties, 

0 < g(0) < c-3 

s 

m 
-m IdOl dt < a 

(1) 

(2) 

g(t) is continuous in t. (3) 

Since g(t) is an autocorrelation, it is therefore an even 
function of its argument. In Section IV, we modify these 
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1 Whether this is the energy density spectrum or power density 
spectrum depends upon the class that the signal falls in. See Sec- 
tion II. 

restrictions to allow periodic and discrete time functions. 
For the above class, we define functions f(t) to be of 
finite energy if 

s 

m 
o< _m If(t dt < ~0 (4) 

in which case 

g(t) = I- f(df(t + 4 dT. -m (5) 

Further, we define functions f(t) to be of finite average 
power if 

0 < lim 1 
s 

T 

T-m 2T -T tf(Ol” dt < ~0 (f-3) 

in which case 

g(t) = ;+t & s_: f(df(t + 4 d7. (7) 

Functions of finite energy or of finite average power 
therefore satisfy (a), and if their autocorrelation function 
satisfies (1) and (3), then our results hold.’ 

We now define a set of normalized autocorrelation 
functions, R,(t) as 

R (t) 0 = !@m 
g(O) 

s m Rn-1(4Rn-l(t + T) dr 
R,(t) = -m 

s m 
n = 1,2,3, ... . (9) 

R:-,(T) dr 
-m 

We recognize that R,(t) is the normalized autocorrelation 
function of the normalized autocorrelation function 
R,,(t), etc, We may thus consider R,,(t) to be the nth 
iterated normalized autocorrelation function of f(t). 

Consider the Fourier transform, X,(w), defined by 

X,(w) = j-- R,(t)e-‘“’ dt for all n (10) --m 

and its inverse 

R,(t) = & lrn X,(w)e’“’ da. (11) m 

Defining as usual, 8: (w) to be the energy density spectrum 
of R,(t), we note that X,(w) is proportional to the energy 
density spectrum of R,‘-,(t) for n 2 1; in particular, 
So(w) is proportional to the spectral density3 of f(t). We 

s The properties expressed in (1) and (3) are most easily stated 
in terms of g(t) and will be left in that form. 

3 That is, for signals of finite energy, SO(w) represents their 
normalized energy density spectrum, whereas for signals of finite 
average power, SO(W) represents their normalized pourer density 
spectrum. 
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also observe that Z?,(t) and X,(w) are both real even func- 
tions of their arguments. 

III. THE FUNDAMENTAL THEOREM 

In the introduction, we stated that our procedure, 
consisting of operations limited strictly to the time domain, 
was able to determine the peak of the spectrum of a 
function f(t). More specifically, we state 

Theorem 1: If X,(W) has a unique absolute maximum 
atw = @,I&. 

then 

S,(e) > X,(w) for w # f0 w-3 

a(nd 

lim R,(t) = cos 0t (13) n-m 

(14) 

Corollary: If SO(o) has a finite number of equal absolute 
maxima at the frequencies O,(lc = 1, 2, . . . , K), then 

lim R,(t) = $ 2 cos ekt n-m h 1 
and 

8 (4 
i ) 

&b-4 2” --r- = - 
8s 0,) s,(h) 

The details of proof for this theorem and its corollary 
may be found in Kleinrock. A short heuristic proof may be 
given as follows. Using the fact that the Fourier transform 
of the autocorrelation of a real even function is equal to the 
square of the Fourier transform of the function itself, 
me transform both sides of (9) to obtain 

&lJw) = 

s 

m I-c:-1k4 ?a = 1,2,3, ... , 
I?-,(T) dr 

-cc 

Alternatively, we may use Parseval’s theorem to rewrite 
this as 

s,(w) = tJT n = 1, 2, 3, “. , 

s 

m s,“-l(w) 
x:-,(u) au 

-m 

Forming the ratio X,(w)/&(B), we obtain 

fL(w) _ 
( > 

2 &-lb) 
a@) s,-,(e) 

Now since x,(w)/x,(e) < 1 for 

lim s,(w) = O 
n-m ( ue) 1 

a,11 w # &tB, we iind that 

w z fe 
w = =te. 

4 L. Kleinrock, “Detection of the Energy Peak of an Arbitrary 
” M. I. T. Lincoln Laboratory, Lexington, Mass. Tech. 

From the definition of R,(t), we observe that R,(O) = 1 
and thus, the total area under X,(w) is constant and equal 
to 2n for all n. Consequently, since X,(w) is vanishingly 
small compared to ,SJO) for all w f &B, we recognize 
that as n -+ ~0, X,(w) must approach two impulses cen- 
tered at o = f0. Clearly, the transform of such a function 
is a pure cosine wave. Summarizing, then, the theorem 
is based upon the fact that raising a function to an arbi- 
trarily large exponent and then normalizing this expo- 
nentiated function to have constant area, magnifies the 
value of the original function at its peak and shrinks the 
value of the function elsewhere. 

IV. EXTENSION TO PERIODIC AND DISCRETE 
TIME FUNCTIONS 

In order to extend Theorem 1 (and its corollary) to 
periodic and/or discrete time functions, we need merely 
replace certain of the integrals of Section III with the 
expressions described below. 

For continuous periodic functions, our results hold if we 
redefine the limits of all previous time integrals to extend 
over a single period, T, (say), and if we redefine all inte- 
grations with respect to w as sums over the discrete set of 
harmonic frequencies, viz., 

s 

m 

-m 
z(t) dt + + 

0 .I 

TO/% 

z(t) dt (15) _ 
To/? 

and 

(16) 

where 

For these periodic functions, we obtain periodic auto- 
correlat.ion functions g(t) where 

In addition,5 from (9), (ll), and (16), 

2 Sn(wm) = 1. 
m=-co 

For discrete aperiodic time functions, our results hold 
if we replace all time integrals with infinite summations 
over the discrete time variable, and also redefine the limits 
on all integrations over w to extend over the finite range 
-r/At _< w _< r/At where At is the uniform increment be- 
tween adjacent time samples. That is, 

r 
m 

x(t) dt + 2 z(tm) J-CC m=-cc 

6 Note that for continuous aperiodic time functions, 

s 
m X,(w) dw = 27rR,(O) = 2a. 

-m 

(19) 
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and 

where 

t, = mAt. (21) 

For these discrete functions, we obtain discrete auto- 
correlation functions g(t,). Furthermore, we find that 

s 

T/At 
X,(w) dw = z. (22) 

-a/Al 

For discrete functions (of increment At) which are 
periodic with period PAt, we must make the following 
changes,’ 

s 

m P--l 
z(t) dt -+ z 46) (23) -cc 

(24) 

where 

ti = iAt 

27rm 
w,=---- PAt 

For these discrete periodic functions, we obtain discrete 
periodic autocorrelation functions g(&). Moreover, we have 

(25) 

V. FINITE SPECTRAL RESOLUTION- 
A FEASIBLE TIME DOMAIN PROCEDURE 

The interesting feature of our iterated autocorrelation 
function is that one may determine the spectrum peak 
(at w = 8, say) of a signal with operations strictly in the 
time domain. Generally, in practice, one has a signal f(t) 
of finite duration (T) to consider.? As a result, R,,(t), 
the autocorrelation of the signal will be zero outside the 
interval ItI >_ T. However, the formal procedure for 
calculating R,(t) as described by (9) indicates that R,(t) 
will, in general, be nonzero in the interval ItI 5 2”T. 
From a practical point of view, this requires an expo- 
nentially increasing complexity (in either equipment or 
computation). At the same time we have an exponential 
rate of convergence to our limit function where the ezpo- 
nent is 2” (as may be seen from (14)). It is clear that this 
rate of convergence, although exponential, is nevertheless 
dependent upon the shape of So(w). Note, however, that 
the resolut,ion is (theoretically) perfect; i.e., we are guaran- 
teed to converge on the value 0, exactly. 

The price for perfect resolution is, as always, extremely 
high and one that we are not willing (or able) to pay; 

6 For convenience, we assume P to be an even integer. When 
P is odd, we must alter the limits in (24) and (25) slightly. 

7 Therefore, the signal will be of finite energy (see (4)). 

namely, we require an unbounded number of calculations 
if we insist on passing to the limit n -+ 03. In particular, 
two separate aspects of the complexity of the process grow 
without bound: the number of iterations, n; and the range 
It/ < 2”T in which R,(t) must be calculated. If we are 
willing to sacrifice some resolution, then we may control 
both of these quantities as follows. 

Let f(t) be the signal whose spectrum peak (at w = 0) 
we desire, where we assume f(t) to be of finite duration T 
seconds; i.e., f(t) = 0 for t < 0 and t > 1’. For this func- 
tion, we make the additional assumptions stated in (l)-(3) 
of Section II. Define R,(t) and S,,(w) as in (8)-(11). We 
introduce the periodic function fl)(t) of period T, 2 2T 
such that 

fD(t + M’,) = f(t) 0 i t I T, (26) 
]c = . . . , -2, -l,O, 1,2, ... . 

For this function, we define XAP) (w,) and RLP) (t) as in 
(4)-(7) with the changes indicated in (15)-(B); the super- 
script P serves to distinguish these from X,(w) and R,(t) 
which refer to f(t). 

In Theorem 2, we show that an estimate 4 of the spec- 
trum peak in f,(t) is a close approximation to 0 when T, 
is sufficiently large. In addition, we describe a procedure 
for obtaining this estimate to within a given accuracy 
after a finite number (n,,) of iterations. Furthermore, 
since periodic functions have periodic autocorrelation 
functions, we recognize that RLp’ (t) is periodic (with period 
T,) for all n. Consequently, we need only carry out our 
calculations of Rip’ (t) over one period only. Thus, by agree- 
ing to estimate 0 within a slight (arbitrarily small) error, 
we have been able to reduce our system to one which goes 
through a jinite number of iterations over a finite interval 
(0, TO) which is fixed with respect to the number of 
iterations. All this, of course, comes about by allowing an 
uncertainty of size p (say) in the estimate of the frequency 
of maximum spectral density. 

The relationship between the time limited signal f(t), 
and its periodic counterpart f,(t), needs further elabora- 
tion. Indeed, we recognize that the autocorrelation func- 
tions of these two signals obey an inverse of the sampling 
theorem. Specifically, since T, 2 2T, RAP’(t) contains all 
the information about R,(t); consequently, X~“(wm) must 
be proportional to S,,(w) at w = W, = 2rm/T,. We may 
calculate this factor of proportionality from (10) and (15), 
Vi%, 

* "TO/Z 
-T,,2 %‘)(Wwmt dt. sAp)(wm) _ & J 

Sd%J 
Lrn R,(t)e-““-” dt J-m 

The integrand in the numerator disappears in the interval 
T < ItI < To/2 and the integrand in the denominator 
disappears over the interval ItI > T. Therefore, since 
To/2 2 T, we find that 

x;“(wJ = & S,(W”J. (27) 
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Recognizing that these two spectra are proportional is 
essential to one’s understanding of Theorem 2. A typical 
case is shown in Fig. 1, where the continuous spectrum 
So(w) is shown as the continuous envelope, and the line 
spectrum T,SAP’ (w,) is shown as vertical lines. Observe 
that the distance between “samples” of S,,(w) is 27r/T,. 
We define an integer M such that wM and w~+~ surround 
the spectral peak at w = 0 (the same clearly holds true 
for -wM, - 8, and -wM+,). Further, we define P to be 
that frequency at which X,(w) has its second greatest 
local maximum. 

In estimating 8, two separate problems confront us: 
first, how do we eliminate competing peaks (such as at 
w = &P) ; and secondly, how do we converge to the 
neighborhood of 0 within the absolute peak itself. The 
first problem may be solved by insisting that the spacing, 
21r/T, be fine enough to insure that at least one sample in 
the neighborhood of 0 (either wM or w,,,) is greater than 
the maximum possible sample near w = p. Thus, an 
important parameter of the spectrum X,(w) may be 
expressed as a lower bound A for the difference between 
these two peaks, vix., 

f&(@ - fh(d 2 A. (28) 

In considering the problem of convergence in the neighbor- 
hood of 8, we recognize that the shape of the spectrum in 
this region is crucial. Specifically, we require that the 
spacing 2n/T,, be small enough to guarantee that some 
lines in the discrete spectrum fall within the range of the 
dominant peak (the narrower the peak, the finer must 
be the spacing). On the other hand, too many spectral 
lines in the immediate vicinity of 0 will result in a large 
number of required iterations because the largest sample 
will not differ significantly from its neighbors. We may 
discuss the width or sharpness of the spectrum in the 
vicinity of its absolute peak by considering the curvature 
of X,(w) in terms of the magnitude of its second derivative 
d2X, (w) /dw2. When the second derivative is large (in 
magnitude), then the peak is narrow, and vice versa. Thus, 
we are led to consider upper and lower bounds for this 
quantity in the neighborhood of 0, vix., 

-A _< w _< -a for jw - 01 _< ‘$. (29) W 0 

The preceding discussion deals qualitatively with those 
factors which determine the required number of iterations 
and the spacing of samples in the discrete spectrum 
(which is governed by the period T,). In addition to these 
considerations, the sampling must be fine enough to 
satisfy the spectral resolution requirements of the user of 
these results. Theorem 2 may now be stated. 

Theorem 2:’ Consider any function f(t) of duration T 
seconds, with spectral peak at w = f0, whose energy 
density spectrum X,(W) satisfies the conditions (28) 
and (29) with respect to the three positive parameters 

8 The rather lengthy proof of this theorem may be found in 
Kleinrock. 
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Fig. l-Comparison between So(w) and iSo( 

(a, A, A). Then, for a given required frequency resolution p 
there exists a procedure (defined below) which will cal- 
culate a number 8 after n, iterations of the autocorrela- 
tion of fJt) [see (26)] over the range 121 I T, such that 

lh-- 01 5 P 

where 

n, + 1 = log, 1. 
62 (39) 

and 

(31) 

and 

T, = max [TdT, t, 2T]. (32) 

Let us now describe the procedure by which we deter- 
mine the estimate 6 from RLp’ (t). We recognize that if one 
line (say at w, = 0,) of the spectrum of the periodic 
function RLp’ (t) is “sufficiently” large’ compared to all the 
other lines, then RL” (t) will appear as a “noisy” cosine 
wave at frequency 0, radians/set. Our procedure then is to 
count the number of “noisy” zero-crossings of this func- 
tion for a known interval of time; if we are successful in 
counting only the true zero-crossings of the pure cosine 
wave, then we can ascertain &, exactly. Accordingly, we 
define a noisy zero-crossing counter as follows. First, we 
consider a &threshold detector with hysteresis defined by 
the transfer characteristic shown in Fig. 2. Further define 

Z(t) = number of zeros (or counts) recorded by the 
noisy zero-crossing counter in t sec. 

Z(0) = 1. 

The noisy-crossing counter consists of a b-threshold 
detector with hysteresis followed by a simple counter which 
registers a count each time the detector changes state 
(in either direction) as in Fig. 3. It is shown in Kleinrock 
that a setting of 6 = l/9 defines a noisy zero-crossing 
counter which produces an estimate 8 consistent with 
Theorem 2. That is, for n 2 n,, we get 6,, 5 6 = l/9 (where 
8, is defined by (34) below). 

9 It is clear that by increasing TO, 0, can be made as close to o 
as one desires, and also, that by increasing the number of iterations, 
S,(P)( 6,) can be made arbitrarily large compared to all other spectral 
components (see Theorem 1). 
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t 
OUTPUT 

STATE B  

Fig. 2-Transfer characteristic of the &threshold detector with 
hysteresis. 

With no loss of generality, we may write 

Ry’(t) = B, cos e,t + b,(t). (33) 

This form exposes the pure cosine wave which we wish to 
detect, and groups the transform of all the other spectral 
components into the function b,(t). Define 6, by 

Then, if 

lb,(t)/ < 6, for ItI 5 To. (34) 

8, 2 2% (35) 

we are guaranteed that Z(t) will increase by unity each 
time B, cos e,t passes through zero, as may be seen from 
Fig. 4. That is, when B, cos 0,t is negative, RAP’(t) < 6, 
and when B, cos 0,t is positive, RAP’ (t) > - 6, thus insuring 
that a single zero-crossing (which is equivalent to a sign 
change) of B, cos 6,t cannot generate more than one count. 
Furthermore, by insisting that B, 2 26,, we guarantee 
that each time B, cos 0,t passes through zero, we must 
get at least one count. Thus Z(t) - 1 will count the number 
of zero-crossings of B, cos 0,t exactly. Now, since TO is a 
multiple of the period of B, cos 0,t, we determine 8, from 

o = -Wo) - 1 
P T, r’ (36) 

More generally, if we observe Z(t) for a time T, where 
0 5 7 < T,, then we may ask how large an error is made 
in our estimation of &,; in particular, how large is 
le, - Z(T)?r/Tj. T o answer this, we use Euclid’s algorithm 
to express 

where P is the period of cos f&t (i.e., P = 29/e,) and q 
and r are, respectively, the quotient and remainder of 
r/P, where, of course, r < P. Since we increment Z(t) twice 
for each period, P, of cos t&t we have q = [Z(T) - 1]/2. 
Thus, 

;= 
T I+ a 

or, multiplying by 2r/r, we obtain 

2?r -=,+;(2;-1). PZ(T) 
P 

Fig. a-The noisy zero-crossing counter. 

I ,B, cos epp’ 

-so--- ------ 
-% - VZ! lV 

I THIS &TANCE MUST 
BE AT LEAST 8” 

Fig. 4-Description of the relation between B, and 6,. 

Now, since t$ = 2a/P, and since r < P, we have 

*,-ZoT <f r -7. (37) 

Thus, we conclude that the noisy zero-crossing counter 
determines from Rp’(t), the frequency 0+ to within the 
accuracy described by (37). The error in this determina- 
tion may be made arbitrarily small by increasing 7. It 
turns out that a convenient value for r can be shown to 
be r = T,/3. 

VI. EXPERIMENTAL RESULTS 

The procedure described in Section V for determining 
the spectral peak of a finite duration signal to a finite 
resolution was simulated on a digital computer.10 Results 
of the experimentation are shown in Fig. 5. 

Specifically, the signal f(t) chosen was a small segment 
(T = 0.0256 seconds) of human speech sampled at a 10 kc 
rate. Fig. 5 shows only one period (i.e., the interval 
0 < t 5 To) of f,(t) and RAP)(t) for n = 0, 1, 2, as well as 
X,(W) for n = 0, 1, 2, 3. To was chosen equal to 2T for this 
experiment. Note that X,(w) is shown only as a visual aid; 
its calculation was clearly not necessary for the generation 
of RAP’(t). We chose to show S,(w) rather than SAP’(w,) 
for convenience of programming; as a result, we observe 
;p8([;: a(w - w,)]/a(w - w,))~ envelope quite distinctly 

Oke clearly observes the rapid convergence of both 
RAP)(t) and S,(w) to the frequency of maximum density. 

10 A  program for simulating the iterated autocorrelation written 
by the author (and a spectrum anaylsis program written by C. 
Rader), was run on the M. I. T. Lincoln Laboratory TX-2 high 
speed digital computer.1l 

ii J. M. Frankovich and H. P. Peterson, “A  Functional Descrip- 
tion of the Lincoln TX-2 Computer,” Proc. Western Joint Computer 
Conf., pp. 146-155; 1957. 
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0 8 W+ 

So(w) 

(e) 

T 

(P) 
R. it! 

(11) 

25 

T 

(P) 
R , (i) 

Cc) 

0 B W-W 

s, (w) 

(f) 

T 

(Pi 
R 2 it) 

(d) (11) 

Fig. S-The power spectrum S,(w) and one period of the iterated autocorrelation function RJP)(t) as a function of the number 
of it,erations n. 
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VII. APPLICATIONS AND CONCLUSIONS 

Theorem 1 expresses the fundamental result that the 
limit of the iterated normalized autocorrelation function 
of a signal is a cosine wave at a frequency (0) corresponding 
to the maximum peak of the signal’s spectrum. However, 
two aspects of the procedure by which one arrives at this 
limit require unbounded complexity: first, the interval 
over which the nth iteration must be calculated (assuming 
the signal to be of finite duration T) is ItI 5 2”T; second, 
the number of iterations grows without bound. These two 
difficulties require unlimited equipment and time, re- 
spectively. Clearly, the reason behind these infinite 
operations is that we are asking for an absolutely perfect 
determination of 0. Naturally, we are willing to accept 
some error in this determination in any practical situation. 
Taking advantage of this fact, we are able to establish 
Theorem 2 in which we offer a procedure for estimating .O 
(to within an arbitrarily small, but finite, error) which 
requires a finite number of calculations over a fixed time 
interval. Thus, by accepting an error in the determination 
of 0, we have been able to eliminate both undesirable 
aspects of the original procedure. 

The procedure for obtaining the estimate (8) of 0 may be 
mechanized approximately as follows (see Fig. 6). The 
signal, f(t) would be stored on a tapped delay line (of T,, 
seconds). At time T,, the impulse response of a linear 
filterI’ would be set equal to the values of the taps, and 
the output of the delay line would then feed into the 
filter. The output of the filter (now equal to the auto- 
correlation of the signal) would then be fed back into the 
delay line. The procedure is repeated n, times after which, 
the output of the filter is sent through the noisy zero- 
crossing counter, which provides the estimate 8. 

12 This filter is 2To seconds long, with its impulse response h(t) 
adjusted such that h(t + ‘f,) = h(t) thus representing the periodic 
version of the signal. In the figure, this linear filter is represented 
as a combination of a holding circuit and a second tapped delay 
line; the outputs are multiplied and summed to form the output 
of the filter. 

Fig. B-Implementation of the procedure for detecting the fre- 
quency of maximum energy density. 

The applications of these results appear to be numerous. 
The detection of the spectral peak of an arbitrary signal 
(for example the peak corresponding to a time series) is 
often of great interest, and may be detected as above. 
li’urthermore, this method may be used for selecting that 
one out of N (say) possible signals transmitted over a 
communication link; in this application, it is necessary 
of course, that the location of the absolute peaks in the 
spectra of the N signals be distinct one from the other, 
such as is the case in frequency shift keying. Another 
application may be found in locating the peak frequency 
in the return signal from a Doppler radar. These are but a 
few of the possible applications of the procedure described. 

The main conclusion to be drawn from this study is that 
the iterated autocorrelation procedure represents a new 
method for detecting the frequency of maximum spectral 
density of a signal. Some areas of application have been 
suggested above briefly, but more careful consideration 
and analysis must be undertaken before one can determine 
the advantages or disadvantages of this system compared 
to any other. In fact, one of the main purposes of present- 
ing this material is to stimulate thinking about the possible 
applications and merits of this new detection approach. 


